研究論文

SnAs 層を含む六方晶層状化合物 EuSn₂As₂の多結晶合成

坂上良介*,後藤陽介**,水口佳一**,的場正憲*, [†]神原陽一*

Synthesis Method of the SnAs-based Layered Hexagonal Compound, EuSn₂As₂

by

Ryosuke SAKAGAMI*, Yosuke GOTO**, Yoshikazu MIZUGUCHI**, Masanori MATOBA* and Yoichi KAMIHARA*

(Received Jan. 22, 2018; Accepted Feb. 23, 2018)

Abstract

SnAs-based layered $EuSn_2As_2$ is a candidate for a thermoelectric material due to its "so-called Zintl-phase-like" crystallographic structure. Its crystallographic structure consists of isolated Eu^{2+} cations and $[Sn_2As_2]^{2-}$ anions bilayers, which is bound by van der Waals forces. Polycrystalline $EuSn_2As_2$ was prepared by two synthesis procedures. In a procedure, a polycrystalline sample was prepared from a europium (Eu) ingot and tin (Sn) and arsenic (As) powders in an alumina tube sealed in an evacuated silica tube. In the other procedure, a sample was prepared from a Eu ingot and a Sn-As pellet in a carbon crucible in an evacuated silica tube. $EuSn_2As_2$ was obtained as a dominant phase by both of the procedures, although the purest polycrystalline sample was obtained by the latter procedure.

Keywords: thermoelectric material, SnAs-based layered compounds, EuSn₂As₂, synthesis method

1. 緒言

熱電変換技術の研究は、棒状の金属に温度差を与えたと きに電圧が生じる Seebeck 効果の報告¹⁾ に始まる. Goldsmid と Douglas による Bi₂Te₃系材料の開発²⁾ 以来、約 30 年間, 実用を目指した熱電変換の研究は、材料の素子化やモジュ ール化に重点が置かれた³⁾. 一方、新物質の開発は比較的少 数の研究グループにおいてなされていた³⁾. しかし 1990 年 代以降, CeFe₄Sb₁₂に代表される充填スクッテルダイト⁴⁾, Zn₄Sb₃系に代表される金属間化合物⁵⁾, Sr₆Ga₁₆Ge₃₀ に代表

** 首都大学東京物理学専攻:東京都八王子市南大沢 1-1 TEL 042-677-1111 Department of Physics, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji 192-0397, Japan

されるクラスレート化合物 のように新たな構造の材料候 補が提案され、熱電変換材料探索の舞台は広がり続けてい る. これらの新物質には, Slack による a phonon glass and an electron single crystal (PGEC) という概念の提案^{7),8)}が生か されている. EuSn₂As₂は、Arguilla らにより、単結晶の電気 抵抗率および配向した結晶の磁化率の温度依存性が報告さ れた⁹⁾. その無次元性能指数 ($ZT \equiv S^2 T \rho^{-1} \kappa^{-1}$)の温度依存 性は 2018 年 1 月の時点で不明である. EuSn₂As₂の結晶構 造は、広義では六方晶系 (hexagonal) と分類される、三方 晶系 (trigonal) の晶系に属し,空間群は R_{3m} である.結晶 軸として六方晶軸 (hexagonal axes) を採用して描いた EuSn₂As₂の結晶構造を Fig. 1 に示す^{9), 10)}. EuSn₂As₂の結晶 は, Eu²⁺のカチオン (#) と, van der Waals (vdW) 力 (1) に より弱く結合した2枚の[Sn₂As₂]²アニオン層 (§) とが交互 に積層した構造をとる. EuSn₂As₂の結晶は,層状構造をと る点,空間群がR3mである点,vdW結合を有する点,およ び, 孤立電子対 (lone pair electrons) を有する点で, Bi₂Te₃ の結晶 11)~13) と共通する特徴を示す. 孤立電子対は、低い

平成 30 年 1 月 22 日受付

 ^{*} 慶應義塾大学理工学部物理情報工学科: 神奈川県横浜市港北区日吉 3-14-1
TEL 045-566-1611 FAX 045-566-1587
Department of Applied Physics and Physico-Informatics Faculty of Science and Technology, Keio University. 3-14-1 Hiyoshi, Yokohama 223-8522, Japan

^{†:}連絡先/Corresponding author kamihara_yoichi@keio.jp