研究論文

層状酸化カルコゲン化物 LaCuSeO の高密度多結晶における

熱電変換性能の一軸加圧異方性

加藤達輝*, [†]神原陽一*, 木方邦宏**, 李 哲虎**

Anisotropic Thermoelectric Exchange Properties of High Density Polycrystalline Layered Oxychalcogenide, LaCuSeO obtained by Uniaxial Hot Pressing

by

Tatsuki KATO*, [†] Yoichi KAMIHARA*, Kunihiro KIHOU**, Chul Ho LEE** (Received Jan. 17, 2018; Accepted Jan. 25, 2018)

Abstract

Undoped LaCuSeO is an electrically insulating mixed anion layered compound (MALC) with an optical band gap Eg ~2.7 eV. Anisotropic thermoelectric exchange properties of uniaxially hot-pressed (HP) polycrystalline LaCuSeO, which is a representative MALC with ZrCuSiAs-type structures, are demonstrated. We defined directions for the measurements parallel/vertical to the pressing axis as P_{\parallel}/P_{\perp} . A crystallographic anisotropy of the polycrystalline LaCuSeO is verified by a ratio between Bragg diffraction intensities with Miller indices 003 and 110 in a tetragonal lattice. XRD patterns of P_{\parallel} and P_{\perp} show weakly *a*-axis and *c*-axis oriented crystallographic phases. While undoped LaCuSeO shows a high resistivity with $\rho = 1.0 \times 10^2 \Omega m$ and does not show measureable Seebeck coefficient at room temperature, ρ of the P_{\parallel} and P_{\perp} show ~60 times smaller than that of undoped. P_{\parallel} and P_{\perp} exhibit a finite large Seebeck coefficient (*S*) with ~800 $\mu V K^{-1}$ at *T* ~ 400 K . The smaller ρ are mainly due to a hole doping by slight crystallographic defects induced via hot-pressing process. *Keywords:* Layered oxychalcogenide, LaCuSeO, Hot press, Transport properties, Seebeck effect

1. 緒言

熱電変換は導体の両端に温度差を与えると、起電力が生 じる Seebeck 効果¹⁾を利用して、温度差から電力を生み出す 技術である.熱電変換の最大変換効率(Carnot 効率)は導体の

平成 30 年 1 月 17 日受付

 * 慶應義塾大学大学院理工学研究科基礎理工学専攻: 神奈川県横浜市港北区日吉 3-14-1 TEL 045-566-1611 kamihara_yoichi@keio.jp
Department of Applied Physics and Physico-Informatics
Faculty of Science and Technology, Keio University. 3-14-1
Hiyoshi, Yokohama 223-8522, Japan

** 産業技術総合研究所 省エネルギー研究部門: 茨城県つ くば市梅園 1-1-1 つくば中央第二 TEL 029-861-5268 National Institute of Advanced Industrial Science and Technology 1-1-1, Tsukuba Chuo Daini, Tsukuba 305-8563, Japan

†: 連絡先/Corresponding author

輸送特性, すなわち電気抵抗率 ρ , 熱伝導率 κ , Seebeck 係数 S, および絶対温度 T を用いて, Ioffe により(1)式²⁾で定義された無次元性能指数(ZT)にて律される.

$$ZT = \frac{S^2}{\rho\kappa}T \quad (1)$$

高い熱電変換性能を示す純物質は現在まで盛んに探索された.しかしながら、室温付近における最大の ZT は 1954年に Goldsmid らにより報告された Bi_2Te_3 ³⁾の ZT = 0.77 が最高であり、 Bi_2Te_3 を超える新規な熱電変換材料の出現はエネルギーハーベスティング技術の発達に必要である.

ZrCuSiAs 型⁴⁾の層状アニオン化合物(Mixed Anion Layerd Compounds, MALC)は,透明 p 型半導体 LaCuSO⁵⁾,

25