投稿総説

粒界ガラス相を含まない酸化物共晶系耐環境皮膜の創製プロセス

上野俊吉,瀬谷恭佑*,古川裕貴*,西村聡之**,張 炳國**

Fabrication of Oxide Eutectic Environmental Barrier Coating without Boundary Glassy Phase

by

[†]Shunkichi UENO*, Kyosuke SEYA*, Yuki FURUKAWA*, Toshiyuki NISHIMURA and Byung-Koog JANG**

(Received Feb. 17, 2016; Accepted Mar. 26, 2016)

Abstract

In this review, the fabrication process and the formation mechanism of Al₂O₃-HfO₂ eutectic environmental barrier coating (EBC) is focused. The solidification process by light focusing was used for the fabrication method of this EBC layer. A multi-layered EBC layer with Al₂O₃-HfO₂ eutectic structure and HfC-HfO₂ functionally graded layer was formed on the SiC substrate. The composition of the liquid phase gradually becomes HfO₂ rich composition during the solidification process due to vaporization of Al₂O₃ component and HfO₂ primary phase solidified on SiC substrate when the composition of the liquid phase reached to the liquid line. The solidified HfO₂ primary phase also reacts with the residual carbon and HfC phase is formed on the SiC substrate. When the solidification process will be finished before all of the HfO₂ primary phase reduced into HfC phase, HfC-HfO₂ functionally graded layer is formed on the SiC substrate. And Al₂O₃-HfO₂ eutectic structure growth from the top of the first layer.

Keywords: Environmental Barrier Coating, Al₂O₃-HfO₂ Eutectic, HfC-HfO₂ Functionally Graded Layer

1. 緒言

近年の SiC セラミックスおよびその複合材料(CMC)は, 高温で十分な強度と信頼性を有し,耐酸化性にも優れるこ とから,ガスタービン部材への応用が約束されている¹⁾. これらの材料をガスタービン部材として用いる際は,高温 における基材の酸化と酸化により生じるシリカ層の水蒸気 による腐食および減肉が問題となる.SiC セラミックスは, 1250℃のガスタービン条件下における 10,000 時間の暴露で, 3 mm 減肉すると報告されている²⁾.したがって,水蒸気に よる基材の減肉を有効に防止するための耐環境皮膜(EBC) が必要となる.著者らは,酸化物の耐水蒸気腐食性を調べ た結果,希土類シリケート相(Ln₂Si₂O₇),ジルコニア相(ZrO₂) およびハフニア相(HfO₂)の耐水蒸気腐食性が,高温のガス タービン条件下で優れることを報告した^{3),4)}.しかし,たと え結晶相の耐水蒸気腐食性が優れていても,粒界に粒界ガ ラス相が存在すると,粒界ガラス相が選択的に水蒸気によ り腐食され,皮膜が多孔質構造となるため,基材の酸化お よび腐食を完全に防止することができない^{5),6)}.したがって, 粒界ガラス相を含まない EBC 皮膜の開発が求められる.

一般に、酸化物共晶は、凝固の際に不純物が偏析により 排除されるため、粒界に粒界ガラス相を形成しない⁷⁾.よ って、酸化物共晶、特に、 ZrO_2 相、 HfO_2 相あるいは $Ln_2Si_2O_7$ (Ln=希土類)相をエッジメンバーとする共晶系は EBC 材料

平成28年2月17日受付

 ^{*} 日本大学工学部:福島県郡山市田村町徳定字中河原1 TEL 024-956-8806 FAX 024-956-8862 ueno@chem.ce.nihon-u.ac.jp College of Engineering, Nihon University: Tokusada, Nakagawahara 1, Tamura-machi, Koriyama 963-8642, Japan

^{**} 物質・材料研究機構:茨城県つくば市千現 1-2-1 National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

^{†:}連絡先/Corresponding author